EXTREMELY HIGH CIRCULATING LEVELS OF 1α , 25-DIHYDROXYVITAMIN D₃ IN THE MARMOSET, A NEW WORLD MONKEY

Toshimasa Shinki 1 , Yoshiko Shiina 1 , Naoyuki Takahashi 1 , Yoshikuni Tanioka 2 , Hitoshi Koizumi 2 and Tatsuo Suda 1*

Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinaqawa-ku, Tokyo 142,

Received June 7, 1983

SUMMARY: Compared to most mammals, the marmoset, a new world monkey, requires particularly large amounts of vitamin D to maintain normal growth. We compared serum concentrations of vitamin D metabolites in marmosets with rhesus monkeys and humans. The circulating levels of $1\alpha,25$ -dihydroxy-vitamin D₃ [$1\alpha,25$ (OH) $_2$ D₃] in marmosets were 4 to 10 times higher than those in rhesus monkeys and humans. But none of the marmosets exhibited hyper-calcemia. In two marmosets which had suffered bone fractures, the $1\alpha,25$ -(OH) $_2$ D₃ levels were particularly elevated. These results suggest that the marmoset has an end-organ resistance to $1\alpha,25$ (OH) $_2$ D₃.

Vitamin D₃ is metabolized first in the liver to 25-hydroxyvitamin D₃ [25(OH)D₃] and then in the kidney mainly to 24,25-dihydroxyvitamin D₃ [24,25(OH)₂D₃] and 1α ,25-dihydroxyvitamin D₃ $[1\alpha$,25(OH)₂D₃] (1, 2). The latter metabolite has been thought to be the active form of vitamin D₃ in enhancing intestinal calcium transport and bone mineral mobilization (1 - 3). Since excess production of 1α ,25(OH)₂D₃ induces marked hypercalcemia, its renal biosynthesis must be tightly regulated. Thus, plasma levels of 1α ,25(OH)₂D₃ are maintained within a very narrow range (20 - 80 pg/ml) in most mammals (4 - 7).

Recently, attention has been focused on a clinical disorder, vitamin D-dependent rickets, type II. The disease is an inheritable disorder characterized by a high circulating level of $1\alpha,25(OH)_2D_3$ and extreme resistance to treatment with $1\alpha,25(OH)_2D_3$ (8 - 12). In the course of searching

² Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 211, Japan

^{*}Address correspondence to: Tatsuo Suda, Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan.

<u>Abbreviations used:</u> $1\alpha.25$ (OH) $2D_3$, $1\alpha.25$ -dihydroxyvitamin D_3 ; 25 (OH) D_3 , 25-hydroxyvitamin D_3 ; 24.25 (OH) $2D_3$, 24.25-dihydroxyvitamin D_3 .

for an animal model for studying the pathogenesis of vitamin D-dependent type II rickets, we found that the marmoset, a new world monkey, has an extremely high circulating level of $l\alpha,25(OH)_2D_3$ without exhibiting hypercalcemia, suggesting that the marmoset may be such a model.

MATERIALS AND METHODS

Animals: Seven adult common marmosets (Callithrix jacchus), 5 males and 2 females, weighing approximately 300 g, were fed a commercial diet containing 9,100 IU of vitamin D_3/kg of diet (Science diet: "Marmosets", Riviana Food Inc., Topeka, Kansas) and fruit (one eighth of an apple and one fourth of a banana per animal every day). In addition, they were given orally 500 IU of vitamin D_3 twice a week. Six young adult rhesus monkeys (Macaca mulatta), all females, weighing 4 - 6 kg, were fed a commercial diet containing 2,400 IU of vitamin D_3/kg of diet (Japan CLEA, Tokyo, Japan).

Chemicals: Vitamin D₃ was purchased from Wako Pure Chemicals, Osaka, Japan. $25(OH) [26,27^{-3}H]D_3$, $24,25(OH)_2[23,24^{-3}H]D_3$ and $1\alpha,25(OH)_2[23,24^{-3}H]D_3$ were obtained from Amersham International, Bucks., U.K. The $1\alpha,25(OH)_2D_3$ receptor protein was kindly donated by Dr. T. Iijima from Yamasa Biochemicals, Chiba, Japan. All other chemicals were of analytical grade.

Measurement of vitamin D_3 metabolites in serum: Blood samples (2 ml for marmosets and 4 ml for rhesus monkeys) were taken from the femoral vein once a week just before the vitamin D_3 supplementation. Blood was also collected from 6 healthy human male volunteers.

To 4 ml of the pooled serum approximately 2,500 cpm of 25(OH)[3H]D3, 24,25(OH)₂[3 H]D₃ and 1 α ,25(OH)₂[3 H]D₃ were added, and the sera were extracted with dichloromethane and methanol (1 : 2, v/v) by the method of Mallon $\underline{\text{et}}$ al (13). The lipid extract was then applied to a Sephadex LH-20 column (0.7 \times 14 cm), which was eluted with a mixed solvent of chloroform and n-hexane (60: 40, v/v). Fractions of 4 - 10 ml, 10 - 20 ml and 20 -40 ml which contained 25(OH)D₃, 24,25(OH)₂D₃ and 1α ,25(OH)₂D₃, respectively, were collected separately. Each fraction was evaporated under nitrogen and injected into a high pressure liquid chromatograph, Waters HPLC Model 204, equipped with a Zorbax-Sil column (4.6 mm x 15 cm, Dupont, Wilmington, Delaware). The solvent systems used were 1.5, 2.0 and 3.0% methanol in dichloromethane for 25(OH)D3, 24,25(OH)2D3 and $l\alpha$,25(OH)2D3 fractions, respectively. Each resulting fraction was subjected to competitive protein binding (CPBA) or radioreceptor assays. $25(OH)D_3$ and $24,25(OH)_2D_3$ were determined by CPBA using serum obtained from rachitic rats as binding protein. $1\alpha,25(OH)_2D_3$ was measured by a modified method of Eisman et al. (14) using the Yamasa $1\alpha,25$ (OH) $_2\text{D}_3$ receptor protein.

Measurement of serum calcium, phosphorus and alkaline phosphatase activity: Serum concentration of calcium was determined with an atomic absorption spectrophotometer (Hitachi, Model 170-50A, Tokyo, Japan). Serum concentration of phosphorus was measured by the method of Fiske-SubbaRow (15). Alkaline phosphatase activity was measured by the method of Bessey-Lowry (16).

RESULTS

Table I shows the serum concentrations of calcium and phosphorus and serum alkaline phosphatase activity in the 7 marmosets. The serum levels of calcium were 7.9 to 9.9 mg/100 ml and of phosphorus, 2.1 to 4.7 mg/100 ml. Marmosets Nos. 6 and 7 showed an apparent hypophosphatemia. Both

6

М М

Animal	Sex	Ca	P	Alkaline phosphatase	Bone	fracture
No.		(mg/100 ml)	(mg/100 ml)	(units)	_	
1	F	9.0	4.7	1.7		-
2	М	9.7	3.9	1.9		-
3	F	8.4	3.7	3.1		-
4	M	7.9	4.6	2.5		-
5	М	8.1	3.4	1.9		-

2.1

2.1

9.2

12.4

Table I. Serum calcium and phosphorus concentrations and alkaline phosphatase activity in individual marmosets.

The serum calcium and phosphorus concentrations and alkaline phosphatase activity of rhesus monkeys were 9.76 + 0.25 mg/100 ml, 3.82 + 0.54 mg/100 ml, and 3.70 + 0.47 Bessey-Lowry units, respectively (means + SEM of 6 animals).

8.8

9.9

marmosets were found by X-ray examination to have osteomalacia and bone fractures. Serum alkaline phosphatase activity in both individuals was 4 to 6 times higher than in the other 5.

Serum levels of 25(OH)D3 were distributed over a range of 12.4 to 204.1 ng/ml, the lowest in Nos. 6 and 7 (Table II). Circulating levels of $l\alpha,25$ (OH) $_2D_3$ were 196.1 to 642.4 pg/ml. Note that, in marmosets Nos. 6 and 7, the la,25(OH)2D3 levels were particularly elevated and the 24,25-(OH) 2D3 levels were extremely low (less than 0.2 ng/ml) (Table II).

Figure 1 shows the comparative mean circulating levels of vitamin D metabolites in marmosets, rhesus monkeys and healthy human subjects.

Table II. Serum concentrations of vitamin D3 metabolites in individual marmosets.

Animal No.	25(OH)D ₃ (ng/ml)	lα,25(OH) ₂ D ₃ (pg/ml)	24,25(OH) ₂ D ₃ (ng/ml)
1	140.2	499.8	3.11
2	72.3	196.1	0.91
3	204.1	304.9	8.23
4	183.3	259.5	4.65
5	32.8	403.7	0.76
6	16.5	642.4	< 0.2
7	12.4	524.1	< 0.2

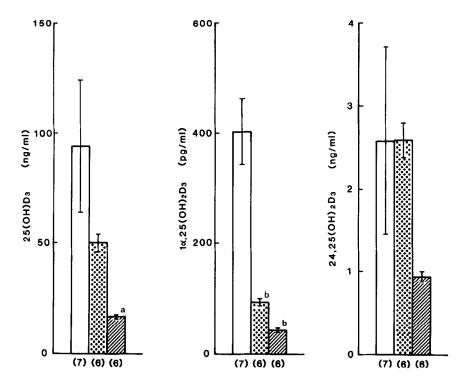


Fig. 1. The mean levels of circulating 25(OH)D₃, lα,25(OH)₂D₃ and 24,25-(OH)₂D₃ in marmosets (□), rhesus monkeys (□) and healthy human subjects (□). Vertical bars show means ± SEM. Numbers of animals used in parentheses. Significance of difference from marmosets: a, p < 0.05; b, p < 0.005.</p>

mean level of $25(OH)D_3$ in marmosets was about 2 and 4 times higher than in rhesus monkeys and humans, respectively. The mean $1\alpha,25(OH)_2D_3$ level in marmosets was also 4 times higher than in rhesus monkeys and 10 times as high as humans. But the mean level of $24,25(OH)_2D_3$ in marmosets was not significantly different from rhesus monkeys, though the levels in individual marmosets varied considerably.

DISCUSSION

The marmoset requires exceptionally large amounts of vitamin D to maintain its normal growth compared with most mammals, including rhesus monkeys and humans. In this experiment, marmosets were maintained on a diet containing 9,100 IU of vitamin D_3 per kg of diet. The mean daily food intake of marmosets was 20 ± 5 g. In addition, the marmosets were given 500 IU of vitamin D_3 twice a week. Thus the daily intake of vitamin D_3

can be calculated to be 300 IU/head. This amount is about 18 times more than for rhesus monkeys on a body weight basis.

In spite of the high intake of vitamin D_3 , all marmosets had normocalcemia or even moderate hypocalcemia. Furthermore, two (Nos. 6 and 7) of the 7 marmosets had severe osteomalacia with hypophosphatemia. X-ray examination showed bone fractures in both individuals. The serum levels of $1\alpha,25(OH)_2D_3$ in these two marmosets were particularly elevated, whereas $24,25(OH)_2D_3$ levels were too low to detect (less than 0.2 ng/ml). Their $25(OH)_2D_3$ levels were also rather low. These results suggest that the renal $25(OH)_3D_3$ -la-hydroxylase activity is markedly stimulated in marmosets, especially in Nos. 6 and 7. In fact, the circulating $1\alpha,25(OH)_2D_3$ levels in marmosets were 4 - 10 times higher than in rhesus monkeys and humans.

It is of great interest that none of the marmosets had hypercalcemia. These findings are very similar to those in vitamin D-dependent type II rickets (8 - 12). It has also been reported that the circulating levels of glucocorticoids are extremely high in marmosets (17). However, marmosets are resistant to high levels of glucocorticoids. Since $1\alpha,25(OH)_2D_3$ is thought to act by a mechanism similar to that proposed for the classical concept of steroid hormone action, the marmoset may have resistance to a variety of steroid hormones. The nature of the receptor proteins in the target tissues in marmosets specifically bound to $1\alpha,25(OH)_2D_3$ is of considerable interest and is now under investigation in our laboratories.

REFERENCES

- 1. Kodicek, E. (1974) Lancet 1, 325-329.
- DeLuca, H. F. (1978) Ann.N.Y. Acad. Sci. 307, 356-376.
- Raisz, L. G., Trummel, C. L., Holick, M. F. and DeLuca, H. F. (1972) Science 175, 768-769.
- Brumbaugh, P. F., Haussler, D. H., Bursac, K. M. and Haussler, M. R. (1974) Biochemistry 13, 4091-4097.
- Hughes, M. R., Brumbaugh, P. F., Haussler, M. R., Wergedal, J. and Baylink, D. J. (1975) Science 190, 578-580.
- Halloran, B. P., Barthell, E. N. and DeLuca, H. F. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 5549-5553.
- Kubota, M., Ohno, J., Shiina, Y. and Suda, T. (1982) Endocrinology 110, 1950-1956.

Vol. 114, No. 2, 1983 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

- Brooks, M. H., Bell, N. H., Love, L., Stern, P. H., Orfei, E., Queener, S. F., Hamstra, A. J. and DeLuca, H. F. (1978) New. Engl. J. Med. <u>298</u>, 996-999.
- Rosen, J. F., Fleischman, A. R., Finberg, L., Hamstra, A. and DeLuca, H. F. (1979) J. Pediatr. 94, 729-735.
- Tsuchiya, Y., Matsuo, N., Cho, H., Kumagai, M., Yasaka, A., Suda, T., Orimo, H. and Shiraki, M. (1980) J. Clin. Endocrinol. Metab. <u>51</u>, 685-690.
- 11. Marx, S. J., Spiegel, A. M., Brown, E. M., Gardner, D. G., Downs, Jr. R. W., Attie, M., Hamstra, A. J. and DeLuca, H. F. (1978) J. Clin. Endocrinol. Metab. 47, 1303-1310.
- Liberman, U. A., Samuel, R., Halabe, A., Kauli, R., Edelstein, S., Weisman, Y., Papapoulos, S. E., Clemens, T. L., Fraher, L. J. and O'Riordan, J. L. H. (1980) Lancet 1, 504-506.
- Mallon, J. P., Hamilton, J. G., Karol, C. N., Karol, R. J., Ashley,
 C. J., Matuszewski, D. S., Tratnyek, C. A., Bryce, G. F. and Miller,
 O. N. (1980) Arch. Biochem. Biophys. 201, 277-285.
- Eisman, J. A., Hamstra, A. J., Kream, B. E. and DeLuca, H. F. (1976)
 Arch. Biochem. Biophys. 176, 235-243.
- 15. Fiske, C. H. and SubbaRow, Y. (1925) J. Biol. Chem. 66, 375-400.
- Bessey, O. A., Lowry, O. H. and Brock, M. J. (1946) J. Biol. Chem. 164, 321-329.
- Yamamoto, S., Utsu, S., Tanioka, Y. and Ohsawa, N. (1977) Acta Ecdocr. 85, 398-405.